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Introduction
Inverse heat conduction problems concerned with the estimation of physical
properties, boundary or initial conditions, or geometric characteristics of a
heated body have been generally treated in the literature. Excellent books are
available for such classes of inverse heat transfer problems, including, among
others, those by Beck et al. (1985), Murio (1993) and Ozisik (1993).

More recently, inverse convection heat transfer problems have gained the
attention of different groups. Moutsoglou (1989) has used Beck’s sequential
function estimation algorithm (Beck et al., 1985) to estimate the steady-state
heat flux distribution at the wall of a vertical parallel plate channel, in a mixed
convection problem. This author (Moutsoglou, 1990) has also applied a whole
domain regularization technique (Beck et al., 1985) to solve basically the same
inverse problem, but for forced convection. The steady-state inlet temperatureInternational Journal for Numerical
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Nomenclature
d = direction of descent given by equation (6b)
eRMS = RMS error as defined by equation (21)
J = functional defined by equation (5)
k = thermal conductivity
N = total number of measurements
q = heat flux
S = number of sensors
t = time
T = temperature
u = velocity
x = axial co-ordinate
y = transversal co-ordinate
Y = measured temperature
w = channel half-width

Greek symbols
α = thermal diffusivity

β = search step size given by equation (9)
∆T = sensitivity function satisfying problem (7)
γ = conjugation coefficient given by equation

(6c)
ε = tolerance
λ = Lagrange multiplier satisfying problem (12)
σ = standard deviation of the measurements

Superscripts
* = dimensional variables
k = number of iterations

Subscripts
0 = reference or initial value
ex = exact quantity
est = estimated quantity
f = final value
i = sensor number
m = mean value

The CPU time for this work has been provided by CESUP-UFRGS.
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distribution in laminar forced convection has been estimated by Raghunath
(1993). The conjugate gradient method with adjoint equation has been applied
by Huang and Ozisik (1992) to the estimation of the steady-state wall heat flux
in hydrodynamically developed laminar flow through a parallel plate duct. The
timewise varying inlet temperature in similar flow conditions has been
estimated by Bokar and Ozisik (1995) by also applying the conjugate gradient
method with adjoint equation.

In this paper, we use the conjugate gradient method with adjoint equation to
estimate the timewise and spacewise variation of the wall heat flux in a parallel
plate channel, under laminar and hydrodynamically developed flow conditions.
This is a powerful iterative method, which can be applied to linear (Alifanov,
1974; Bokar and Ozisik, 1995; Huang and Ozisik, 1992; Jarny et al., 1991), as well
as to non-linear inverse problems (Orlande and Ozisik, 1994).

We use here a function estimation approach, i.e. no information regarding the
functional form of the unknown heat flux is considered available for the inverse
analysis. The accuracy of the present solution approach is assessed by using
simulated transient temperature measurements of several sensors located at
appropriate locations inside the channel. The most difficult functions to be
recovered by an inverse analysis are those containing sharp corners and
discontinuities. The present approach is verified to be sufficiently accurate for
such strict conditions.

Direct problem
The physical problem considered here is the laminar hydrodynamically
developed flow between parallel plates of a fluid with constant properties. The
inlet temperature is maintained at a constant value T0

*, which is also assumed
to be the initial fluid temperature. For times greater than zero, the plates are
subjected to a time and space-dependent heat flux, as illustrated in Figure 1.

Figure 1.
Physical problem
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By taking into account the symmetry with respect to the x-axis and neglecting
conduction along the flow direction, the mathematical formulation of this
problem in dimensionless form is given by:

(1a)

(1b)

(1c)

(1d)

(1e)

where the following dimensionless groups are introduced:

(2a-d)

(2e)

α* and k* are the fluid thermal diffusivity and conductivity, respectively, w* is
the channel half-width and u*

m is the mean fluid velocity. The wall heat flux is
written as

(3)

where q*
o is a constant reference value with units of heat flux and q(x, t) is a

dimensionless function of x and t. The superscript “*” above denotes dimensional
variables.

The direct problem given by equations (1) is concerned with the
determination of the temperature field of the fluid inside the channel, when the
boundary heat flux q(x, t) at y = 1 is known.

Inverse problem
For the inverse problem, the heat flux q(x, t) at y = 1 is considered to be
unknown and is to be estimated by using the transient readings of S
temperature sensors located inside the channel. We assume that no information
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is available regarding the functional form of the unknown wall heat flux, except
that it belongs to the space of square integrable functions in (0, tf) (0, xf), i.e.

(4)

where tf is the duration of the experiment and xf is the length of the test-section
in the channel.

The solution of such inverse problem is obtained by minimizing the
following functional,

(5)

where Yi is the measured temperature at the sensor location (xi, yi) inside the
channel and T[xi, yi, t; q(x, t)] is the estimated temperature at the same location.
Such estimated temperature is obtained from the solution of the direct problem
given by equations (1), by using an estimate for the unknown heat flux q(x, t).

The minimization of the functional given by equation (5) is obtained by
utilizing the conjugate gradient method, as described next.

Conjugate gradient method of minimization
The iterative algorithm of the conjugate gradient method, as applied to the
estimation of the unknown heat flux q(x, t) is given by Jarny et al., 1991:

(6a)

where the superscript k denotes the number of iterations.
The direction of descent dk(x, t) is obtained as a conjugation of the gradient

direction and of the previous direction of descent as:

(6b)

where the conjugation coefficient is obtained from the Fletcher-Reeves
expression

(6c)

In order to implement the iterative algorithm given by equations (6), we need to
develop expressions for the search step size βk and for the gradient direction
J′[qk(x, t)], by making use of two auxiliary problems, known as the sensitivity
problem and the adjoint problem respectively.
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Sensitivity problem and search step size
The sensitivity problem is obtained by assuming that the heat flux q(x, t) is
perturbed by an amount ∆q(x, t). Such perturbation in the heat flux causes a
perturbation ∆T(x, y, t) in the temperature T(x,y,t). By replacing T(x, y, t) by
T(x, y, t) + ∆T(x, y, t) and q(x, t) by q(x, t) + ∆q(x, t) in the direct problem given
by equations (1), and then subtracting from the resulting expressions the
original direct problem, we obtain the following sensitivity problem for the
determination of the sensitivity function ∆T(x, y, t):

(7a)

(7b)

(7c)

(7d)

(7e)

An expression for the search step size βk is obtained by minimizing the
functional given by equation (5) with respect to βk, that is,

(8)

By linearizing the estimated temperature T(xi, yi, t; q
k –βk dk) and performing

the minimization above, we obtain the search step size as

(9)

where ∆Ti(d
k) is the solution of the sensitivity problem at the sensor position

(xi, yi), obtained from equations (7) by setting ∆q (x, t) = dk(x, t).

Adjoint problem and the gradient equation
In order to obtain the adjoint problem, we multiply the differential equation (1a)
of the direct problem by the Lagrange multiplier λ(x, y, t) and integrate over the
time and space domains. The resulting expression is then added to equation (5)
to obtain the following extended functional:
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where δ(•) is the Dirac delta function.
We assume that the extended functional given by equation (10) is perturbed

by an amount ∆J[q(x, t)], when the heat flux q(x, t) is perturbed by ∆q(x, t). An
expression for the variation ∆J[q(x, t)] is obtained by replacing J[q(x, t)] by J[q(x,
t)] + ∆J[q(x, t)] and T(x, *y, t) by T(x, y, t) + ∆T(x, y, t) in equation (10), and by
subtracting the original equation (10) from the resulting expression. We obtain,

(11)

The three terms involving derivatives inside brackets above are integrated by
parts with respect to t, x and y respectively. The boundary and initial conditions
of the sensitivity problem, equations (7b-7e), are substituted into the resulting
expression, which is then allowed to go to zero. The vanishing of the integral
terms containing ∆T(x, y, t) results in the following adjoint problem for the
determination of the Lagrange multiplier λ(x, y, t):

(12a)

(12b)

(12c)

(12d)

(12e)

Finally, in this limiting process the following integral term is left:

*
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(13a)

From the hypothesis that q(x, t) ∈ L2(0, xf) (0, tf), we can write:

(13b)

Therefore, by comparing equations (13a) and (13b), we obtain the gradient
equation for the functional as

(14)

After developing expressions for the search step size βk, equation (9), and for
the gradient direction J′[q(x, t)], equation (14), we can implement the iterative
algorithm of the conjugate gradient method, given by equations (6), until a
stopping criterion based on the discrepancy principle described below is
satisfied.

Stopping criterion
We stop the iterative procedure of the conjugate gradient method when the
functional given by equation (5) becomes sufficiently small, that is,

(15)

If the measurements are assumed to be free of experimental errors, we can
specify ε as a relative small number. However, actual experimental data contain
measurement errors, which will introduce oscillations in the inverse problem
solution as the estimated temperatures approach those measured. Such a
difficulty can be alleviated by utilizing the discrepancy principle (Alifanov,
1974) to stop the iterative process, where the number of iterations works as a
regularization parameter. In such a principle, we assume that the inverse
problem solution is sufficiently accurate when the difference between estimated
and measured temperatures is less than the standard deviation (σ) of the
measurements. Thus, the value of the tolerance ε is obtained from equation (5) as

(16)

Computational algorithm
The basic steps to obtain the solution of the present inverse problem via the
conjugate gradient method with adjoint equation are summarized below.

We suppose there is available an estimate qk(x, t) for the unknown heat flux
q(x, t) at iteration k. Thus:
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Step 1: solve the direct problem given by equations (1) to obtain the
estimated temperatures T(x, y, t);

Step 2: check the stopping criterion given by equation (15). Continue if not
satisfied;

Step 3: solve the adjoint problem given by equations (12) to obtain the
Lagrange multiplier λ(x, y, t);

Step 4: compute the gradient of the functional J′[qk(x, t)] from equation (14);

Step 5: compute the conjugation coefficient γk from equation (6c) and then the
direction of descent dk(x, t) from equation (6b);

Step 6: solve the sensitivity problem given by equations (7) to obtain ∆T(x, y,
t), by setting ∆q(x, t) = dk(x, t);

Step 7: compute the search step size βk from equation (9);

Step 9: compute the new estimate qk+1(x, t) from equation (6a) and go to step 1.

Results and discussion
We use transient simulated measurements in order to assess the accuracy of the
present approach of estimating the unknown wall heat flux q(x, t). The
simulated temperature measurements are obtained from the solution of the
direct problem for a specified function q(x, t). The temperatures computed in
this manner are considered to be errorless, and the simulated measured data is
given by:

(17)

where Yex is the solution of the direct problem; α is a random variable with
normal distribution, zero mean and unitary standard deviation; and σ is the
standard deviation of the measurements. The random variable α is determined
with the subroutine DRNNOR from the IMSL (1987).

The direct, sensitivity and adjoint problems were solved with finite-
differences by using an upwind discretization for the convection term and an
implicit discretization in time. The resultant linear system of equations was
solved iteratively by using Gauss-Seidel’s method with SOR and red-black
reordering (Ortega,1988), so that the computations would be done in vector
form in a Cray Y-MP. Such reordering resulted in a speed up of approximately
ten over a scalar version of the same computational code.

For the cases considered below, we have taken the total experiment duration
(tf) as 0.08 and the channel test-length (xf) as 0.004, while the heat flux at the
boundary y = 1 was assumed in the form:

(18)

The domain was discretized by using 101 and 81 points in the x and y directions
respectively, while using 41 time steps. Such a number of points was chosen by
comparing the solution of the direct problem for the local Nusselt number
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obtained by finite-differences, with a known analytical solution (Cotta and
Ozisik,1986).

By examining equations (12d,e), we note that the gradient of the functional
given by equation (14) is null at the final time (tf) and at the final axial position
(xf). Therefore, the initial guess used for the iterative process remains
unchanged at tf and at xf. In the examples shown below, we use as an initial
guess for the final time and for the final position the exact values for q(x, t),
which are assumed available. For other times and axial positions, we take q(x, t)
null as the initial guess for the conjugate gradient method. We lose no
generality with such approach, since we can always choose tf and xf sufficiently
greater than the respective experimental time and test section length of interest,
so that the boundary heat flux is known.

Figures 2a-2c present the results obtained for a boundary heat flux
containing a triangular variation in x and a step variation in time, in the form:

(19a-c)

Figure 2a.
Inverse problem
solution for different
times obtained with 21
sensors. Triangular
variation in the axial
direction given by
equations (19)
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1

0

Dimensionless heat flux, q(x,t)

0.000 0.001 0.002 0.003 0.004
Dimensionless position, x

Estimated:

= 0σ = 0.01*Tmaxσ

t = 0.002

t = 0.04

t = 0.07

Exact
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Figure 2b.
Inverse problem

solution for different
axial positions obtained

with 21 sensors. Step
variation in time given

by equations (20)

5

4

3

2

1

0

Dimensionless heat flux, q(x,t)

0.000 0.02 0.04 0.06 0.08
Dimensionless time, t

Estimated:

x = 0.0004

x = 0.0036

Exact

= 0σ = 0.01*Tmaxσ

Figure 2c.
Inverse problem

solution for x = 0.002
obtained with 21

sensors. Step variation
in time given by

equations (20)
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0

Dimensionless heat flux, q(x,t)

0.00 0.02 0.04 0.06 0.08
Dimensionless time, t

Estimated:

x = 0.002

Exact

= 0σ = 0.01*Tmaxσ
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(20a,b)

For such a case, we have used in the inverse analysis 21 sensors located at y =
0.95. The first sensor is located at x1 = 0.00004 and the last one at x21 = 0.00396.
The others are equally spaced so that xi = (i–1)0.0002, for i = 2, …,20. Figure 2
show the results for errorless measurements (dashed lines), as well as for
measurements with a standard deviation σ = 0.01 Tmax (symbols), where Tmax
is the maximum temperature measured by the sensors. In Figure 2a, we have
the results for the axial variation for three different times, where qt(0.002) =
qt(0.07) = 1 and qt(0.04) = 2 from equations (20a-20b). The unknown heat fluxes
for such times are accurately predicted, so that the results for t = 0.002 and t =
0.07 fall in the curve at the bottom, while those for t = 0.04 fall in the curve at
the top of Figure 2a. The predicted heat flux is in good agreement with the exact
one for both errorless measurements and measurements with random error.
Figures 2b-2c show the results obtained for the flux variation in time for
different axial positions. The results for x = 0.0004 and x = 0.0036 fall on the
same curve in Figure 2b as expected, since qx(0.0004) = qx(0.0036) = 1 from
equations (19). The results shown in Figure 2c for x = 0.002, where q(x, t) has a
peak in x, are also in good agreement with the exact functional form assumed
for q(x, t).

The RMS error (eRMS) for the results shown in Figures 2 obtained with
errorless measurements, is 0.014. We define the RMS error here as:

(21)

where N is the total number of measurements used in the inverse analysis, while
qex and qest are the exact and estimated heat fluxes respectively.

Figures 3a-3c present the results obtained for a heat flux with a step
variation in x and with a triangular variation in time, in the form:

(22a,b)

(23a-c)

where the dashed lines show the results obtained with errorless measurements
and the symbols show the results obtained with measurements with a standard
deviation of σ = 0.01Tmax. The 21 sensors used for this case are located at y =
0.95 and at the same axial positions as for the case shown in Figures 2. Figure



Wall heat flux in
a parallel plate

channel

707

3a shows the axial variation of q(x, t) for different times that correspond to qt(t)
= 1, as given by equations (23). Similarly, Figure 3b shows the axial variation of
q(x, t) for t = 0.04, when qt(t) has a peak, i.e. qt(t) = 2 as given by equations (23).
In Figure 3c, we have the results for the variation of q(x, t) in time for three
different axial positions, so that, in accordance with equations (22), we have
qx(0.0004) = qx(0.0036) = 1 and qx(0.002) = 2. As for the case presented in
Figures 2, Figures 3 show that present function estimation approach is capable
of recovering the unknown heat flux q(x, t) quite accurately for errorless
measurements, as well as for measurements containing random errors. The
RMS error is 0.045 for the results shown in Figures 3, obtained with errorless
measurements.

The results shown above in Figures 2 and 3 can be generally improved by
using more measurements in the inverse analysis. Let us consider, for example,
the estimation of the axial variation of q(x, t) shown in Figure 3a. In Figure 4, we
present the estimation of q(x, t) for the same case studied in Figure 3a, but using
the errorless measurements of 101 sensors instead of 21. The sensors are
equally spaced along the channel length and at y = 0.95. The time frequency of
measurements was considered to be the same as for Figure 3a. By comparing
Figures 3a and 4, we can clearly notice the improvement in the estimation of 

Figure 3a.
Inverse problem

solution for different
times obtained with 21
sensors. Step variation

in the axial direction
given by equations (22)
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0

Dimensionless heat flux, q(x,t)

0.000 0.001 0.002 0.003 0.004
Dimensionless position, x

Estimated:

Exact

= 0σ = 0.01*Tmaxσ

t = 0.002

t = 0.02

t = 0.06

t = 0.07
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Figure 3b.
Inverse problem
solution for t = 0.04
obtained with 21
sensors. Step variation
in the axial direction
given by equations (22)
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Exact

= 0σ = 0.01*Tmaxσ

Figure 3c.
Inverse problem
solution for different
axial positions obtained
with 21 sensors.
Triangular variation
given by equations (23)
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Estimated:

x = 0.0004
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Exact

= 0σ = 0.01*Tmaxσ
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q(x, t) by using more sensors along the channel. The RMS error obtained with
101 sensors is 0.013 as compared to 0.045 obtained by using 21 sensors.

For inverse heat conduction problems dealing with the estimation of a
boundary condition, the sensors should be located as close to the boundary with
the unknown condition as possible (Beck et al., 1985) in order to improve the
estimation. Such is also the case for inverse convection problems. We have
estimated q(x, t) for qx(x) and qt(t) given by equations (22) and (23), respectively,
and by using the errorless measurements of 21 sensors located at the same axial
positions as for Figures 3, but at y = 0.9, instead of at y = 0.95. The RMS error
has increased to 0.238, as compared to 0.045 obtained with the sensors located
at y = 0.95.

We note in Figures 2-4 that generally the agreement between the estimated
solutions and the exact functional form assumed for q(x, t) tends to deteriorate
near the final axial position and near the final time. This is due to the very small
values of the gradient of the functional, equation (14), in such regions as can be
noticed by examining equations (12d,e).

Figure 4.
Inverse problem

solution for different
times obtained with 101

sensors. Step variation
in the axial direction

given by equation (22)

5

4

3

2

1

0

Dimensionless heat flux, q(x,t)

0.000 0.001 0.002 0.003 0.004
Dimensionless position, x

Estimated,

t = 0.002

t = 0.02

t = 0.06

t = 0.07

Exact

= 0σ
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Conclusions
A function estimation approach based on the conjugate gradient method with
adjoint equation has been successfully applied to the inverse problem of
estimating the timewise and spacewise variation of the wall heat flux in a
parallel plate channel.

Results obtained with simulated measurements show that the present
approach is capable of recovering sharp corners and discontinuities in the exact
functional form assumed for the unknown heat flux. The results appear to be
stable with respect to random measurement errors.

We note that the sensors should be located as close to the boundary with the
unknown heat flux as possible, in order to obtain accurate estimations. Also, as
many sensors as possible should be used for the inverse analysis, without
disturbing the flow in the channel.
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